TÜVNORD

VERIFICATION STATEMENT (STATEMENT No. 1/10.06.2024)

FOR THE GHG EMISSIONS OF

TERNA ENERGY S.A.

85 Mesogeion Ave. 11526 Athens, Hellas

REPORTING PERIOD

2023

VERIFICATION STATEMENT

Date of Verification Insurance:	01/01/2024
Verification Body:	TÜV HELLAS
Address:	282 Mesogeion Ave, 155 62 Cholargos, Hellas
Accreditation data Hellenic Accreditation System S.A (E.SY.D S.A.):	Certificate No.: 884-5/ 24.01.2023

Information on Installation Owner			
Name of Installation Owner:	TERNA ENERGY S.A.		
Contact Person:	Mr. Antonios Voutsis, Director of QHSE & S. Dep.		
Address:	85 Mesogeion Ave. 11526 Athens, Hellas		
Telephone/Fax:	+ 30 2106968215/-		
E-mail of contact person:	avourtsis@terna-energy.com		

Information on Installation Identity:			
Installation:	Operation of Wind & Solar Parks & Head Offices		
Contact Person:	Mr. Antonios Voutsis, Director of QHSE & S. Dep.		
Address:			
Geographic Location:	See attached list of Wind & Solar Parks		
Telephone/Fax:	+ 30 2106968215/-		
E-mail of contact person:	avourtsis@terna-energy.com		
Year for GHG Assertion Reporting:	2023		
Type of Activity:	Production of Energy from Renewable Energy Sources		

Decision of TÜV HELLAS Technical Committee			
Installation's GHG Assertion Report Accepted	\boxtimes		
Installation's GHG Assertion Report Accepted with Comments			
Installation's GHG Assertion Report not Accepted			
Current Statement deals with GHG Assertion Report of date	06/2024		

Verification Scope

TÜV HELLAS was contracted by TERNA ENERGY S.A. for the independent third party verification of direct and indirect carbon dioxide equivalent emissions CO_{2e} consisting of CO_2 CH_4 N_2O as provided in the **TERNA ENERGY S.A. Greenhouse Gas Statement 2023** to a **reasonable** level of assurance.

Verification activities were performed in accordance with ISO 14064-3:2018 *Specification with guidance for the validation and verification of greenhouse gas assertions* and the verification time period was 01.01.-31.12.2023.

Roles and responsibilities

The QHSE management of TERNA ENERGY S.A. is responsible for the organization's GHG information system, the development and maintenance of records and reporting procedures in accordance with that system, including the quantification and reporting of GHG emissions.

It is TÜV HELLAS's responsibility to express an independent GHG verification opinion on the emissions as provided in the <u>TERNA</u> <u>ENERGY S.A. Greenhouse Gas Statement 2023</u>.

Title or description of activities

The organizational boundaries were established following the operational control approach on a global basis. The scope of this verification covered coterminous emissions from the following GHG sources occurring within TERNA ENERGY S.A. facilities and head offices:

Scope 1 Emissions	Scope 2 Emissions	Scope 3 Emissions
 Emissions from stationary combustion (fuels consumption other than used in fleet) (Diesel, Petrol), Emissions from mobile combustion (fuels consumption used in fleet (Diesel, Petrol, Fugitive emissions 	 Indirect emissions from im- ported electricity (Market and location based) 	 Purchased goods and services Capital goods Fuel- and energy-related activities Upstream transportation and distribution Waste generated in operations Business travel Employee commuting

Objectives

The objectives of this verification were, by review of objective evidence, to confirm whether the GHG emissions as declared in the organization's GHG assertion were:

- ➤ accurate,
- > complete,
- > consistent,
- ➤ transparent and
- ➢ free of material error or omission

in accordance with the criteria outlined below.

Verifier's work involved review and substantiation of information through selected interrogation of both source and consolidated data in conjunction with interviews with corporate staff responsible for data collation, management and report content.

<u>Criteria</u>

Criteria against which the verification assessment was undertaken:

1. Reporting standards:

World Resources Institute/World Business Council for Sustainable Development, "The Greenhouse Gas Protocol: A Corporate Accounting and Reporting Standard, Revised Edition" (the GHG Protocol),

2. Reference calculation methodologies:

- > National Inventory Report for Greece (NIR 2023), IEA 2023 (for Bulgaria, Poland)
- UK Government GHG Conversion Factors for Company Reporting Defra 2021 v. 2.0, Defra 2023 v.1.1, BEIS (2020), EPA (2018), EXIOBASE (2019), ADEME

Level of Assurance and Materiality

The level of assurance agreed was the <u>"reasonable"</u> one and a 5% materiality threshold was applied at the gross organizational level. The assessment of compliance and materiality was undertaken against the stated calculation methodology. An overall (GHG emissions) uncertainty of below 5% was calculated.

Conclusion

TÜV Hellas's Lead Verifier has planned and executed the TERNA ENERGY S.A. GHG Assertion verification obtaining information, explanations and evidence considered necessary to provide a reasonable level of assurance for a fair statement of the reported GHG emissions for the indicated time period.

TÜV Hellas's Lead Verifier has conducted TERNA ENERGY S.A. GHG Assertion verification including evaluation of the company's GHG information system and monitoring and reporting methodology.

Based on the data and information provided by TERNA ENERGY S.A. and the processes and procedures conducted, TÜV Hellas's Lead Verifier concludes that the TERNA ENERGY S.A. GHG Assertion

- is materially correct and is a fair representation of the GHG data and information, and
- is prepared in accordance with the related International Standard on GHG quantification, monitoring and reporting, or to relevant national standards or practices

The TERNA ENERGY S.A. GHG Assertion for the time period 01.01. - 31.12.2023 disclosing <u>emissions of 130,357 tn CO_{2eq}</u> is verified by TÜV HELLAS to a **reasonable level of assurance**, consistent with the agreed verification scope, objectives and criteria as follows:

VERIFICATION STATEMENT

Reference Period:

01.01. - 31.12.2023

Overall GHG during the reference period:

Total Emissions	130,356.6	tn CO _{2eq}
Scope 1 Emissions	381.5	tn CO _{2eq}
Scope 2 Emissions	0.0	tn CO _{2eq}
Scope 3 Emissions	129,975.1	tn CO _{2eq}

	1: Electricity from National Interconnected Transmission Grid
Energy Carrier / Fuel used:	2: Diesel
(Scope 1 & 2)	3: Petrol
	1. Purchased goods and services
	2. Capital goods
	3. Fuel- and energy-related activities
Emissions categories: (Scope 3)	4. Upstream transportation and distribution
	5. Waste generated in operations
	6. Business travel
	7. Employee commuting

GHG Emissions Information

- 4.1 Direct non-biogenic emissions (Scope 1)
 - > Emissions from fuels consumption other than used in fleet

Fuel Type	Fuel Quantity (It)	Emission factor CO₂ (kgCO₂/lt)	Emission factor CH4, (kgCO2/lt)	Emission factor N₂O, (kgCO₂/lt)	Greenhouse gas emissions (tn CO _{2e})
Diesel	11,871.65	2.47887	0.00029	0.03290	29.82
Petrol	177.16	2.08354	0.00806	0.00587	0.37
	Total Emissions				30.19

> Emissions from biogas production

Fuel Type	Fuel Quantity (tn)	Emission factor (kgCO₂/tn)	Greenhouse gas emissions (tn CO _{2e})
Biogas	3,950.00	1.23595	4.88
		Total Emissions:	4.88

> Emissions from fuels consumption used in fleet

Fuel Type	Fuel Quantity (It)	Emission factor CO ₂ (kgCO ₂ /lt)	Emission factor CH ₄ (kgCO ₂ /lt)	Emission factor N ₂ O (kgCO ₂ /lt)	Greenhouse gas emissions (tn CO₂e)
Diesel	109,181.18	2.47887	0.00029	0.03290	274.27
Petrol	34,399.71	2.08354	0.00806	0.00587	72.15
Total Emissions					346.42

4.2 Indirect non-biogenic emissions (Scope 2) – Location Based

> Electrical energy consumption

Electrical energy consumption (kWh)	Country	Emission factor (gCO ₂ /kWh)	Greenhouse gas emissions (kg CO₂e)
6,913,448.96	Greece	371.68	2,569,590.71
207,574.20	Bulgaria	410.4	85,188.45
37,300.00	Poland	650.7	24,271.11
Total Scope 2 em	issions – Location	2,679,050.27	
Total Scope 2 emiss	sions – Location B	2,679.05	

> Indirect non-biogenic emissions (Scope 2) – Market Based

> Electrical energy consumption

Electrical energy consumption <u>from RES</u> (kWh)	Country	Emission factor (gCO₂/kWh)	Greenhouse gas emissions (kg CO ₂ e)
6,913,448.96	Greece	0.00	0.00
207,574.20	Bulgaria	0.00	0.00
37,300.00	Poland	0.00	0.00
Total Scope 2 emissions – Market Based			0.00

4.3 Scope 3 emissions

Category	tn CO _{2e}
1. Purchased goods and services	47,951.82
2. Capital goods	71,578.44
3. Fuel- and energy-related activities	717.46
4. Upstream transportation and distribution	9,320.8
5. Waste generated in operations	87.46
6. Business travel	210.95

7. Employee commuting	108.16
Total	129,975.09

KPI Data Assurance

In addition to the GHG data verification detailed above, a total quantity of **3,730,524,840,00 m**³ of water withdrawn from freshwater for the operation of TERNA ENERGY hydropower stations has also been verified as follows:

- Dafnozonara hydropower station (Acheloos River Basin):
- Eleousa hydropower station (Axios River Basin):

1,184,518,440.00 m³ 2,546,006,400.00 m³

Installation's GHG Assertion Accepted:

The GHG Assertion of TERNA ENERGY S.A. for the year 2023 is considered as accepted.

For the Verification Athens, 07/06/2024 For Technical Reviewing Athens, 08/06/2024 For the Approval Athens, 10/06/2024

Nikolaos Vamvakaris Lead Verifier

Dr.-Ing. Panagiotis Achladas Lead Verifier

> Margarita Kypriotou Approved Signatory

Hom tofic of

NNEX		
COMPANY NAME	COUNTRY	PROJECT INSTALLATION
		 Wind farms Louzes and Skopia, Nafpaktos
		 Wind farms Profitis Ilias, Tsouka, Tsilikoka and
		Pyrgari, Aliveri, Evia
TERNA ENERGY S.A.		 Wind farm Perdikokorfi, Crete
TERRIT ENERGY SINC		 Hydropower station in Dafnozonara,
		Aitoloakarnania
		 PV park, Louzes, Nafpaktos
	-	Aliveri Offices
DELTA AXIOU ENERGIAKI SA		Adendro Biogas Production Unit, Thessaloniki,
	-	Greece
PPCR-TERNA ENERGY SA		Hydropower station in Eleousa, Thessaloniki, Greece
ENERGIAKI DERVENOCHORION SA	GR	Wind farm Krekeza, Voiotia, Greece
AIOLIKI PANORAMATOS		Wind farms Mavrovouni I, II, Voiotia, Greece
DERVENOCHORION SA	-	
AIOLIKH RACHOULAS		Wind farms Rachoula I, II, III, Voiotia, Greece
DERVENOCHORION SA	4	
VATHICHORI ENA PHOTOVOLTAIKI SA		PV park, Vathichori I, Psatha, Attica, Greece
VATHICHORI DYO ENERGIAKI SA		PV park, Vathichori II, Psatha, Attica, Greece
TERNA ILIAKI PANORAMATOS SA		Wind farm Mavroplagia, Voiotia, Greece
TERNA ILIAKI VIOTIAS SA		Wind farm Plagia Silom, Voiotia, Greece
TERNA ILIAKI PELOPONISOU SA		Wind farm Mouggoulios, Voiotia, Greece
AIOLIKI PASTRA ATTIKIS SA	-	Wind farm Gkouri Meles, Voiotia, Greece
COMPANY NAME	COUNTRY	INSTALLATION
ENERGIAKI SERVOUNIOU SA		Wind farm Didymos Lofos, Thrace, Greece
TERNA ENERGIAKI EVROU SA	-	Wind farm Mytoyla, Thrace, Greece
ENERGIAKI FERON EVROU SA		Wind farm Chilos, Thrace, Greece
AIOLIKI DERVENI TRAIANOUPOLEOS		Wind farm Derveni, Thrace, Greece
SA		Wild faill Derven, finace, Greece
ENERGIAKI XIROVOUNIOU SA		Wind farm Xsirovouni, Thrace, Greece
	-	•
IWECO CHONOS KRITIS SA	-	Wind farm Chonos, Crete, Greece
ENERGIAKI PELOPONISOU SA	-	Wind farm Eressos, Veroia, Greece
ENERGIAKI NEAPOLEOS LAKONIAS SA		Wind farm Lefkes, Veroia, Greece
EUROWIND SA		Wind farm Stavroti, Rodos, Greece
AIOLIKI ILIOKASTROU SA	-	Wind farm Loggarakia, Argolida, Greece
TERNA ENERGY ST. GEORGE SA	-	Wind farm Agios Georgios Island, Greece
TERNA AIOLIKI AMARINTHOU SA	GR	Wind farms Vorina Litharia & Kalogeriki Rachi,
	GR	Aliveri, Evia, Greece
AIOLIKI ANATOLIKIS ELLADOS SA		Wind farms Pyrgari II, Voureza, Koskina-Lakka,
	-	Aliveri, Evia, Greece
ENERGIAKI DISTION EVIAS SA		Wind farms Agriachladia and Mesokipi, Aliveri, Evia,
		Greece
AIOLIKI MARMARIOU EVIAS SA		Wind farms Karampila, Gkalosi, Pyrgari Dardiza,
	4	Evia, Greece
ENERGIAKI STYRON EVIAS SA		Wind farm Exostis, Marmari, Evia, Greece
AIOLIKI PROVATA TRAIANOUPOLEOS		
SA		Wind farm Taratsa, Voiotia, Greece
		Dexamenes, Kalamaki I, Kalamaki II, Praro,
TERNA ENERGY OMALIES S.A.		Molizeza I Wind Farms, Karystos, Greece
		Wind farms Ntougkza and Mouriza, Vios – Kalamaki,
ENERGIAKI KAFIREOS EVOIAS S.A.		Karystos, Greece
		Aidoni Wind Farm, Karystos, Greece
	1	
AIOLIKI KARYSTIAS EVOIAS SA		
ECO ENERGY DOBRICH 2 EOOD		Wind farm Karapelite 1, Bulgaria
	BG	

HAOS INVEST 1 EAD		Wind farm Vranino and Office in Varna, Bulgaria
EOLOS POLSKA SP ZOO		Wind farms Gorzkowice and Krzyzanow, Poland
EOLOS NORTH SP ZOO	-	Wind farms Sieradz and Nasielsk, Poland
EOLOS NOVO SP ZOO		Wind farms Czarnozyly and Szadek, Poland
EOLOS EAST SP ZOO	PL	Wind farm Makow, Poland
BALLADYNA SP ZOO		Wind farm Chelmza, Poland
WIRON SP ZOO		Wind farm Chojnice, Poland
JP GREEN SP ZOO		Wind farm Tuchola, Poland

EOLOS NOVO SP ZOO	Wind farms Czarnozyly and Szadek, Poland
EOLOS EAST SP ZOO	Wind farm Makow, Poland
BALLADYNA SP ZOO	Wind farm Chelmza, Poland
WIRON SP ZOO	Wind farm Chojnice, Poland
JP GREEN SP ZOO	Wind farm Tuchola, Poland